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Problems of numerical simulation of branched hydraulic systems are considered. Difference schemes in 

Riemann invariants are constructed for nonlinear equations of poorly compressed fluid that are prescribed 

on hydraulic networks. Results of numerical simulation of fluid flow in the hydraulic drive of a mechanism 

for lowering cargo are presented. 

Problems of the study and calculation of forced fluid flows play an important role in the design and 

manufacture of hydraulic drives. Work of hydraulic drives is characterized by the high dynamic nature of the 

processes and can occur under conditions of considerable load fluctuations and pulsating feed of fluid. When the 

frequency of fluid feed pulsations coincides with the resonance frequencies of hydraulic lines, valves, and other 

apparatuses, fluid oscillations may be multiply amplified by the amplitude. The thus-arising resonance phenomena 

and vibrations deteriorate the operation characteristics of hydraulic drives and reduce their reliability. Therefore, 

problems of the dynamics of a hydraulic drive and its design parameters with allowance for transient processes 

lead to the necessity of thorough study of the processes occurring in it by the methods of mathematical simulation. 

The specifics of the calculation of branched hydraulic systems (hydraulic networks) lies in the necessity 

of integrating nonstationary equations in partial derivatives the region of whose determination is associated with 

the graph [1, 2 ]. In [3, 4 ], computational algorithms are suggested for solving systems of interrelated equations 

of hydraulics determined on a finite coupled graph under the simplest conjugation conditions assigned in the nodes 

of the graph. On the basis of implicit difference schemes in the Riemann invariants, we constructed computational 

algorithms for nonlinear equations of hydraulics prescribed on the hydraulic network. In this case, models of basic 

apparatuses of hydraulic drives were used as the conjugation conditions in the nodes of the network [5]. The 

efficiency of the suggested algorithms is demonstrated by the example of numerical simulation of fluid flow in the 

hydraulic drive of a mechanism for lowering cargo. 

1. Formulation of the Problem. We consider a branched hydraulic system which can be presented as a 

coupled graph G. Structural parts of the hydraulic system (pipelines) constitute the edges of the graph and structural 

units (branches of pipelines, hydraulic cylinders, pumps, safety valves, etc.) serve as nodes. The nodes and edges 

of the graph are numbered independently of each other; on each edge we arbitrarily take a positive direction. We 

denote sets of the numbers of inner nodes, limiting nodes, and edges of the graph by r/= {I, 2 . . . . .  n}, r/r = {n, 

+1 . . . . .  n + nr}, and ), = {1, 2 . . . . .  M}, respectively; 7~q) and 7(-q) are the sets of numbers of the edges with the right 

and left end, respectively, adjacent to the qth node (q E r/ U r/r). 
Structural parts of the hydraulic system (edges of the graph G) are the elements with distributed 

parameters, and the processes in them are described by differential equations in partial derivatives. In the structural 

units (nodes of the graph G), unsteady flow of fluid can be described by either algebraic or ordinary differential 

equations relating fluid parameters in the unit and time. 
To describe unsteady processes in a hydraulic drive the following mathematical models of the main 

elements of the hydraulic drive are used: 
(a) Pipeline. In the region (x, t) E U f2~ × (0, T), where ~ = {xk: 0 _< xk -< Lk} is the edge of the graph 

k e y  

G with the number k, fluid flow is described by the following system of one-dimensional hydrodynamic equations: 
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av h av k 1 apk 2vh [ vkl 
+ v k + + - -  - - 0 ,  (1) 

OP t Ov k OP k 

e = (.PCk) -1 c k = X / Ered/p Ere d = E n (I + d k Efl/(C5 k Ew) ) ) , • 

The adjoining conditions are set on the region boundaries 

p-k = (pk + ~-~ p I vk I vh/2)  l ~h=o, ~k- - o ,  k E ~,(q,) ; 

+ + + 

Ph = ( P h - ~ h  P Irk[ vh/2)  lxh=L h,  ~ >-0 ,  k e } ' ( q 2 ) ,  

(2) 

These conditions express pressure-head losses for overcoming local hydraulic drags ~-  , ~-  at the inlet and outlet 

from the kth pipeline. 

(b)  Branching of pipelines. Balance equations of the form 

hvhlxh--o-  E hv~l~h:L ~ = o .  
+ 

hEr(q) hEr(q) 
(3) 

are assigned in the corresponding node q of the hydraulic network. 

(c )  Hydraulic cylinder. The dynamics of the hydraulic cylinder is described by the equation of piston 
translational motion due to pressure forces, outer load, and friction forces 

+ du dz 
flP(q) - f2P(q) = m - ~  + bu + F 1 (z) + F 2 (t) , u = --~, 0 < z < Lcyl, (4) 

and by the equations of flow rates with allowance for fluid compression in cavities: 

dp_•q 1 + dp(q) 1 _ 
dt = k - - l ( f~v~lxh=Lk-- f lu ) '  k E}'(q), at = k--2 (fzu - - f lV l l x l :O) '  I C y ( q ) .  (5) 

+ 
Here and in what follows, for hydraulic elements whose mathematical models include pressure at the inlet p(q) and 

outlet from the element p(q), we take the element inlet to be connected with the outlet of the kth pipeline, and the 

+ = p ~ , k E  + element outlet with the inlet of lth pipeline: p(q) 7(q), p(q) = p / ,  l • ~'(q). 

( d )  Check and safety valves. With no regard for fluid compression in valve channels,  the flow-rate equations 

have the form (3), the value of flow is determined by the flow ra te -p ressure  drop characteristic of the valve 

Q(AP(q)) : 

_[- 

fkVkl Xk=L k = flVl[ xt=O = Q (Ap(q)), Ap(q) = p(q) - p(q) , Q (Ap(q)) = O, Ap(q) <_ APval. (6) 

(e )  Heat  exchanger. Fluid flow rate through the heat exchanger is related with the pressure drop at the 

inlet and outlet by the relationship 

+ - 1 . 4 2  2 

p(q) -- p(q) = 8584nh.cx lh.ex Vh.cx , fkvk [ Xk=L k = ftvt[ xz=0 = 0.257~dh.exVh.ex , (7) 

where nh.ex is the number of paths in the heat exchanger; /h.ex, dh.ex are the path length and conditional passage 
of the heat exchanger. 

( f )  Pump. The pump is characterized by the feed of fluid Q(t) ,  where Q(t) is a set function of time. 
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( g )  Dra inage .  The  boundary-value  condition p(q) = Patm, Patm = 1.01325" 105 Pa, is set in the corresponding 

node of the hydraulic network. 

Thus,  the problem of mathematical  simulation of fluid flow in the hydraulic sys tem lies in integrat ion for 

t > 0 of the sys tems of equations (1) with conjugation conditions of the form (2)-(7) and  given initial data vk (xk ,  

t) lt..o = v°(x~,), pk(x~,  t) l t -o  = p° (x~) .  
2. Computa t ional  Algorithms. The sys tem of equations (1) when Iv/el < ck is hyperbol ic  and  can be 

presented in Riemann  invariants r k = Pk + pCkVk, Sk = Pk -- pCkVk in the form 

Or k Or k = OSk 3s k 
O--t- + (~°k + ck) Ox k - ~Ok (rk - sk) ' - - ~  + (79k - ck) ~ x  k = ~Ok (rk -- sk)  ' (8) 

where ~o/~ = (r k - sk) / (2pck) ,  ~k = 21 ~o k I / (4dk). We introduce the node grid 

COhr ----- a) h X ~1: , 

COb = {Xk, i+l  = Xk,i + hk,i  , i =  O, N k - - 1 ,  x k , O = 0 ,  Xk,Nk = t k  1 ,  

We approximate  by the difference scheme the system of equations (8): 

. ~  A A A / X  

rkt + ( ~°k + ck) rky = -- ~ k  ( rk -- sk) , i =  1 . . . . .  N k ,  

A A f ~  I~, A 

Skt + ( ~o k -  ck) Skx = ~O k ( r k -  sk) , i = O . . . . .  N k -  1 .  

"+1 ^ (f~,  Here fk = f~,i,  f k  = f [ , i  , f k t  = ([~ - f~) / r ,  f k x  = i+j - f~,i ) / hk, i. To realize (9) we use the i teration process 

Ira+, rkt + ~°k + Ck rk-~ = _ ~ 0  k r k - -  Sk , i =  I , . . . , N  k ,  

Skt + 79k _ Ck Skx = ~Ok rk -- Sk , i = 0 ,  . . . , N  k -  1 . 

Expressions (10) are the "running calculation" scheme 

(9) 

(10) 

m + l  m + l  m + l  m + l  + 
rk,i = ~k+i r k , i - I  + Vk , i ,  i = 1 . . . . .  N k ,  Sk,i = ~k,i Sk,i+l + Vk , i ,  i = N k - 1 . . . . .  O ,  (11) 

where 

_1._ m m 

~k+i = Ok, i + rk,i + T ~Ok,i Sk, i _  + _ T ( m ) 
m ' Vk,i = m ' Ok, i S°k, i + Ck ' + + 

1 + Ok, i + r lPk,i 1 + Ok, i + ~ ~k , i  h k , i - I  

m m 

~k.i = Ok'i , # = Sk'i + r ~Pk,i rk,i , O~,i - 
, trl v . . , .  m 

1 + Ok, i + TWk, i  1 + Ok, i + T~dk,i 

r n + l  m + l  

To determine  the invariants rk,O, Sk,Nk we obtain the relations 

~°k,i -- Ck " 
hk,i  

r n +  1 m + L r n +  I r n +  | 
(12) 
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N k N k N k N k - 1 N k -  1 a -  1 

= = H k,,, lq , 4  = E H 
i = 1  a = l  i = a + l  i = 0  a = 0  i = 0  

Approximating the adjoining conditions (2) by Whr with allowance for (12), we obtain systems of linear 

m + l  m + l  m + l  m + l  
- -  + 

equations relating the invariants rk, o, Sk .Nk  and pressures P k  , Pk : 

m + l  m + l  m + l  

(1 +0k-) rk, 0 + ( 1 - 0 k - ) ~ -  sk,Nk --2pk- = - - ( 1 - - 0  k ) v  k , 

m + l  m + t  m + l  

+ = - ( l - O ; ) v ;  (1 - 0 ; ) ~ ;  rk, 0 + (1 + 0 ; )  Sk,Nk -- 2 P c  

(13) 

I 1/ + +1 0 ~ - = 0 . 5 ~ -  vk, 0 c k, o k =0 .5~  k vk,,v k c k. 

Let us introduce into consideration the vector p -- ( P ( I ) ,  P ( 2 )  . . . . .  P ( n ) ) '  of nodal pressures in the inner 
nodes of the hydraulic network. We assume the following for the nodes that are branching points of pipelines: 

+ + - - ( 1 4 )  p(q )  = p(q)  , k E y(q)  , p (q )  = P k  , k E y(q)  , 

by and for the nodes characterized pressures p(q), p(q) at the inlet and outlet from the corresponding hydraulic unit 

(valve, hydraulic cylinder, etc.) 

+ + + + - - - ( 1 5 )  P(q)  = P(q)  , P(q)  = P k  , k E Y(q) , P(q)  = P l  , l ~ y (q)  . 

Using the equations of hydraulic-cylinder dynamics as an example, we consider approximation of 
mathematical models of the nodes of the hydraulic network. We approximate Eqs. (5), (6) to Whr by the difference 

scheme 

m + l  m + l  m + l  m 
m + 1 m d F  1 m + 1 m 

l i P ( q )  + - f2P(q)- = rn u - u + u + F l ( z ) + - - ~ - Z z  r ( u _ u ) + F2  ( ty+l )  , (16) 

m + l  m + l  

+ + m + l  m + l  - - m + l  m + l  (17) 
P(q)  z - -  p (q )  k l  = f k  Vk ,N  k - -  f l  U ' P(q)  z --  p (q )  k 2  = f 2  u - f t  V t ,o"  

Rearranging (16), we obtain 

)> - + ( 1 8 )  P(q)  = f l  P(q)  --  f l l  f t  vl, O + P 2  3 ,  

where 

m i n  + 

m u  m d F  1 m , U l k  2 
m d F  1 P l k2P(q)  + F 1 ( z ) + ~ u - F 2 ( t]+ 1) /z3 - + f 2 .  

/~ = - 7 - + b + - d T - ~  " '  / "~=  ~ f z W -  - ~ , r f z 

m + l  m + l  m + l  
+ . 

rn+l Using (18) and relations (14), (15), we express in (13) p~-, Pk m terms of the elements p ( q )  o f  the vector 

p of nodal pressures. The system of linear equations obtained js presented in the form 
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m + l  m + l  
A(k ) r(t ) - 2P(k ) p =b(k  ), k ~ y ,  09) 

r(k) = rk,O , rk,N k , P = ~P(I) ' P(2) . . . . .  P(n))  ' 

ACt ) (aa~,a ,  f l =  1 , 2 ) ,  a~kl ) > a , a > a(2kl ) , 

. (k) 
P(k)=l ,  Pa~,a  = 1 , 2 ,  f l =  l , n ) ,  

{ { + 
t, lfl = O, k ~ , q ~ ) ,  P ~  = O, k ( ~ y ~ ) .  

The difference analogue of fluid flow-rate equations (17) with allowance for (18) takes the form 

m +  t m + l  m + l  + b(+k):k b ~ :  l vl, 0 Uqq p(q) Vk,Nk + + = dq. 

Here 

1 1 + 
b(k) = ~1 ' b~  - :2 

1 1 k,  f l  k2] dq 
Uqq = - -~ -]-11 + ~ 2  ) , = ~ 

- - - ( 1  . / ,  

,t/2kl kiP(q) k2P(q)) 

:, - : 2 )  
Consequently, the balance equations in the inner nodes of the hydraulic network can be written in the form 

m + l  m + l  
/k B~k~.. v(k) + V p = d ,  

k~y 

(20) 

(21) 

v(k ) =  Vk, 0 , Vk,Nk , U =  (uafl, a,  fl = 1, n ,  uafl = O , a ; e f t ) ,  d =  (d l , d  2 . . . .  dn) , 

{ + + 
B ( k ) = t % / ~ ,  a =  1 n , f S =  1 , 2 ) ,  = _ = + 

' O, k ff y(~), O, k q) ~,(~). 

Since the representation 

v(k ) =  C(k)  r(k ) +g(k) (2pck), C(k)= ~+ _ , g ( k ) = ( - - v ~ - ,  vk ) , 
k 

rn+l  
takes place for the vector v(k ), balance equations (21) in the Riemann invariants can be written as 

m + l  m + l  m + l  
fk B(k) C(k) r(k)/ck + 2pU p = 2/) d - ~.  fk B(k) g(k) / c k "  (22) 

k~ 7 k~7 

Relations (19), (22) are the system of linear equations relative to 2M + n unknowns. We note that det A(k) ;e 0. 

Consequently 
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Fig. I. Schematic of the hydraulic drive of the mechanism for lowering cargo 
(1-24, pipeline numbers). 

m + l  m + l  

r(k ) = 2A Pk P + A(k) b(k), k E ~,. 

Substituting (23) into (22), we obtain the system of n linear equations 

m + l  
- I  (24) Z p = p d - 0.5 ~ /k B(k) (C(k) A(k) b(k) + g(k))/ck- 

k~y 

The elements of the matrix Z -- ~ fkB(k)C(k) A(-~ P(k)/ck + p U  of the system (24) are determined by the formulas 

,(k). (k~ ¢,(k) ~(k) + a(~ ) ¢(k) 
z o o -  oo,  a,2 + al , )) + X + - -  ~ ' a 2  ~ k  , c t  , 

- + + - 

er(a) nr(fl) /~er(a) nr(fl) 

- -  + 
2 ~k a12 ) + PUaa , 

- 4 %  

Thus, the original initial-boundary-value problem for the equations of a weakly compressible fluid in 

Riemann invariants is reduced by the Newton-type iteration process to the solution of linear algebraic equations 
m+l  m+l  m+l  m + l  

(24) relative to n unknowns P(D, P(2) . . . . .  P(n) in the graph nodes. Then from (23) we find the invariants rk,O, 
m+l  

Sk,Nk at the boundaries of the graph edges. The values of the invariants in the remaining nodes of the grid are 

determined by the equations of "running calculation" (11). 

3. Computational Experiment. The algorithms constructed were used to study unsteady fluid flows in the 

hydraulic drive of a mechanism for lowering cargo (Fig. 1). The scheme of the hydraulic drive includes the pump 

P1, force cylinders C1, C2, distributors D1, D2, D3, the safety valve SV1, check valves ChVl ,  ChV2, ChV3, the 

heat exchanger H.Exl ,  the filter for cleaning the working fluid F1, and the necessary connecting pipelines. 

The lengths of the pipelines varied from 0.1 to 1.58 m and the diameters from 0.025 to 0.048 m. The 
thickness of the pipeline walls 6 k was 2.5.10 -3 m, their roughness was A k = 5- l0 -5 m, the elasticity modulus of 

the material E w = 2.06-l0 - l l  N / m  2. The coefficient of hydraulic drag 2k was found by the formula 
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Fig. 2. Displacement z(t) of pistons of cylinders C1, C2 (1) and change in 

pressure in pipeline 20 (2). z, m; p, MPa; t, sec. 

Fig. 3. Change in pressure [nh.ex = 10 (1), 25 (2) ] and velocity [nh.ex = 10 

(3), 25 (4) ] in pipeline 20. v, m/sec.  

~-k = { 6 4 / R e k '  Rek -< 2320, 

0.11 ( A i / d  k + 68/Rek) °25 ,  Re k > 2320. 
k 

The safety valve SV1 is adjusted to pressure Ap -- 2.0- 107 Pa, and the pressure of adjustment  of check 

valves is 5" 105 Pa. Cylinders C1, C2 and the heat exchanger H.Exl had the following characteristics: Dcy I = 0.18 

m, Dr = 0.08 m, Lcy I = 1 m, m = 3500 kg, b = 0 kg/sec, F(z) = 0 N, F(I) = 3.5.104 N, nh.ex = 10, lh.ex = 1 m, 
dhex = 0.04. Fluid feed by the pump PI was Qp -- 190t l i ters/min, t _< 2 sec, Qp = 380 liters/rain, t > 2 sec. Working 
fluid parameters were p = 840 kg /m 3, v = 2- 10 -5 m2/sec, Fn = 1.6- 109 N/m.  

Distributors D1-D3 perform the control functions over cylinders CI,  C2 in the hydraulic system. Cargo is 

lifted by switching the distributor DI to the position Ill. The time of lifting cargo of weight 7- 103 kg was 9 sec 

(Fig. 2). Switching of D1 to the position I, and D2 and D3 to the position II (mode of cargo lowering) took place 

at the time instant t = 10.I sec. In this case, a short-term increase in pressure up to 3.29 MPa was observed in the 

drainage hydraulic line (pipeline 20). Change in pressure and fluid flow rate in the drainage hydraulic line as a 

function of passes nh.ex of the heat exchanger H.Exl  is shown in Fig. 3. The time of cargo lowering was 6.4 sec. 

The deviation of the results of the computational experiment from the data obtained during a full-scale experiment 
did not exceed 9 ~ .  

The calculation results presented are obtained by the program complex of the automated computational 

experiment developed by the authors for simulating processes in hydraulic networks. The complex of programs 

involves the dialog monitor; graphical editor, which allows the creation and correction of principal circuits of 

hydraulic systems; special program aids for solving nonlinear equations of hydrodynamics in hydraulic networks; 

and subsystem for analyzing and processing simulation results. The program complex is in tended for s tudying 

processes in systems involving the following hydraulic units: pipelines, pumps, safety and check valves, hydraulic 

engines, pneumatic-hydraulic storage batteries, hydraulic cylinders, distributors, and filters. 

Conclusions. Computat ional  algori thms are developed to solve nonl inear  equations of hydraul ics  in 

hydraulic networks. The algorithms suggested can be used to study unsteady processes in hydraul ic  drives during 

their design. 

N O T A T I O N  

p, v, p, v, pressure, velocity, density, and kinematic viscosity of fluid; dk, fk, Ok, Ak, diameter,  cross-section 

area, thickness, and roughness of walls of the kth pipeline; Rek = vkdk/V, Reynolds number; En, Ew, bulk elasticity 

moduli of fluid and wall material; Ered, reduced elasticity modulus; Ck, velocity of sound propagation in the kth 

pipeline; p(q), fluid pressure in the node q of the hydraulic network; b, coefficient of viscous friction; z, u, Lcy b 
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displacement, velocity, and path of the piston; m, mass of movable parts of the hydraulic cylinder reduced to the 

rod; fl = 0.25~Dc2yt; f2 = 0.2&t(Dc2yl - Dr2), working areas of pistons in cavities 1 and 2; Dcycl, Dr, diameters of 

+ p~q), fluid pressures in cavities 1 and 2; FI (z), F2(z), loads on the rod; kl, k2, coefficients cylinder and rod; p(q), 
of elasticity of hydraulic-cylinder cavities; Apv, pressure of valve adjustment. 
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